
Pattern matching
dependent types in Coq

@mbrcknl
May 2015

match e as v in T i return R v i with
 C a => B a
end

For the branch
• substitute C a for v
• match the type of C a with T i

Then B a must have type R v i

For the whole match expression
• substitute e for v
• match the type of e with T i

Then the type of the match is R v i

A pattern match only refines its return type

Defer the introduction of arguments so their types
appear in return annotations

Thread explicit evidence through the return
annotation to recover relationships between things
inside and outside a match (convoy pattern)

A pattern match must cover all constructors

Match on type indices in the return annotation to
convert nonsense cases to a trivial type (unit)

How would you like pattern-matching to behave?

Write functions which provide that behaviour

Code

m.brck.nl/ylj15

Bibliography

adam.chlipala.net/cpdt

