Getting data structures right
with GADTs and nested types

--- I

---------------------------- I g S

---------- 0 dEa

.. O
@mbrcknl

matthew.brecknell.net

2-3 B-tree comprises either:
« {one, two} data + {two, three} subtrees
 a leaf containing nothing at all

Every leaf is equidistant from the root

Data are ordered left to right

Insertion

.......... nE Jel-|sf|toft1}— 1 deletion

2-3 B-tree comprises either:
« {one, two} data + {two, three} subtrees
 a leaf containing nothing at all

data N a
=T1 (Ta)a(Ta)
| TR (Ta)a (Ta)a(Ta) '/I‘l\
data T a '/Tl\ LF
=Br (N a) LF Tl
| LF / \
LE Tl
O(n) search / \

LF LF

2-3 B-tree comprises either:
« {one, two} data + {two, three} subtrees
 a leaf containing nothing at all

data T a
=Br (N a)
| LF

ghci> :t Br
Br::Na—Ta

2-3 B-tree comprises either:
« {one, two} data + {two, three} subtrees
 a leaf containing nothing at all

data T a
=Br (N a)
| LF

data T a where
Br:Na—Ta
LE:Ta

2-3 B-tree comprises either:
« {one, two} data + {two, three} subtrees
 a leaf containing nothing at all

Every leaf is equidistant from the root

2-3 B-tree comprises either:
« {one, two} data + {two, three} subtrees
 a leaf containing nothing at all

Subtrees must have the same height

data Nat=Z | S Nat

data T n a where
Br:Nna—=T(Sn)a
LF::TZa

data N n a
=T]1 (Tna)a(Tna)
| TR(Tna)a(Tna)a(Tna)

data Nat=Z | S Nat

data T n a where
Br:Nna—=T(5n)a
LE:TZa

data N n a
=T]1 (Tna)a(Tna)
| TR (Tna)a(Tna)a(Tna)

Data must be ordered left to right

insert 4

insert 4

insert 4

insert new node

'

insert 4

reconstruct search path

insert 4

garbage-collect old version

insert 4

insert 5

overflow

'

insert 5

combine parent

insert 5

combine parent

insert 5

insert 6

Insert

insert /7

overflow

insert /7

insert /7

— overflow

insert /7

data Nat=Z | S Nat

data T n a where
Br:Nna—=T(5n)a
LE::TZa
data N n a

=Tl (Tna)a(Tna)
| TR (Tna)a(Tna)a(Tna)

data Tree a where
Tree :: Tna— Tree a

data T n a where
Br:Nna—=T(5n)a
LE::TZa

data Tree a where
Tree :: Tna— Tree a

ingsert :: Ord a = a — Tree a, — Tree &
insert x (Treet) = ins t

where
ins = undefined

data T n a where
Br:Nna—=T(5n)a
LE::TZa

data Tree a where
Tree :: Tna— Tree a

insert :: Ord a = a — Tree a — Tree a
insert x (Treet) = ins t
where
ins :: Foo
ins = undefined

data T n a where
Br:Nna—=T(5n)a
LE::TZa

insert :: Ord a = a — Tree a — Tree a

insert x (Treet) =inst
where
Ins :: Foo
ins = undefined

couldn’t match expected type
‘Tna— Treea’
with actual type
‘Fo0’

data T n a where
Br:Nna—=T(5n)a
LE::TZa

insert :: Ord a = a — Tree a — Tree a

insert x (Treet) =inst
where
ins:: Tna— Tree a
ins = undefined

couldn’t match expected type
‘Tna— Treea’
with actual type
‘Fo0’

data T n a where
Br:Nna—=T(5n)a
LE::TZa

insert :: Ord a = a — Tree a — Tree a
insert x (Treet) =inst
where
ins:: Tna—Insna
ins = undefined

data T n a where
Br:Nna—=T(5n)a
LE::TZa

insert :: Ord a = a — Tree a — Tree a
insert x (Tree t) = finish (inst)
where
ins:: Tna—Insna
ins = undefined
finish :: Insn a — Tree a
finish = undefined

insert :: Ord a = a — Tree a — Tree a
insert x (Tree t) = finish (inst)
where
ins:: Tna—Insna
ins = undefined
finish :: Insn a — Tree a
finish = undefined

data Insn a
= Keep (T'n a)
| Push (Tna)a(Tna)

insert :: Ord a = a — Tree a — Tree a
insert x (Tree t) = finish (inst)
where

ins:: Tna—Insna

ins = undefined

finish :: Insn a — Tree a

finish (Keep t) =Treet

finish (Push abc¢)=Tree (t1 abc)

data Insn a
= Keep (T'n a)
| Push (Tna)a(Tna)

insert :: Ord a = a — Tree a — Tree a
insert x (Tree t) = finish (inst)
where

ins:: Tna—Insna

ins = undefined

finish :: Insn a — Tree a

finish (Keep t) =Treet

finish (Push abc¢)=Tree (t1 abc)

type Keep tna=Tna—t
type Push tna=Tna—=a—=Tna—t%

insert :: Ord a = a — Tree a — Tree a
insert x (Tree t) = finish (inst)
where

ins:: Tna—=Keeptna—=Pushtna—t
ins = undefined
finish :: Insn a — Tree a
finish (Keep t) =Treet
finish (Push abc¢)=Tree (t1 abc)

type Keep tna=Tna—t
type Push tna=Tna—=a—=Tna—t%

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins = undefined
finish :: Insn a — Tree a
finish (Keep t) =Treet
finish (Push abc¢)=Tree (t1 abc)

type Keep tna=Tna—t
type Push tna=Tna—=a—=Tna—t%

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins = undefined

type Keep tna=Tna—t
type Push tna=Tna—=a—=Tna—t%

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins = undefined

data T n a where
Br:Nna—=T(Sn)a
LE::TZa

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins LF =1
where
i keep push = undefined

data T n a where
Br:Nna—=T(Sn)a
LE::TZa

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins LF =1
where
i::Keept Pa—=PushtPa—t
i keep push = undefined

couldn’t match type Z with P
data T n a where

Br:Nna—=T(Sn)a
LF::TZa

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins LF =1
where
i:KeeptZa—=PushtZa—t
i keep push = undefined

couldn’t match type Z with P
data T n a where

Br:Nna—=T(Sn)a
LF::TZa

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins LF =1
where
i:KeeptZa—=PushtZa—t
i keep push = undefined
where
_=keep::TZa—t%t
_=push::TZa—a—=TZa—t

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins LF =1
where
i:KeeptZa—=PushtZa—t
1 keep push = keep LLF
where
_=keep::TZa—t%t
_=push::TZa—a—=TZa—t

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins LF =1
where
i:KeeptZa—=PushtZa—t
1 keep push = push LF x LLF
where
_=keep::TZa—t%t
_=push::TZa—a—=TZa—t

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins LF = \keep push — push LF x LF
where
i:KeeptZa—=PushtZa—t
1 keep push = push LF xX LLF
where
_=keep::TZa—t%t
_=push::TZa—a—=TZa—t

insert :: Ord a = a — Tree a — Tree a

insert X (Treet) = inst Tree (((Tree.).).tl)
where
ins:: Tna—=Keeptna—=Pushtna—t
ins LF = \keep push — push LF x LF
where
i:KeeptZa—=PushtZa—t
1 keep push = push LF xX LLF
where
_=keep::TZa—t%t
_=push::TZa—a—=TZa—t

ins:: Tna—=Keeptna—=Pushtna—t
ins LF = \keep push — push LF x LF

data T n a where
Br:Nna—=T(Sn)a
LE::TZa

ins:: Tna—=Keeptna—=Pushtna—t
ins (Br node) =inode
where
i =undefined

data T n a where
Br:Nna—=T(Sn)a
LE::TZa

ins:: Tna—=Keeptna—=Pushtna—t
ins (Br node) =inode
where
i:NPa—KeeptMa—PushtMa —t
i =undefined

couldn’t match type ‘S P’ with ‘M’

data T n a where
Br:Nna—=T(Sn)a
LE::TZa

ins:: Tna—=Keeptna—=Pushtna—t
ins (Br node) =inode
where
iSp~m=
Npa—Keeptma—=Pushtma—t
i =undefined

couldn’t match type ‘S P’ with ‘M’

data T n a where
Br:Nna—=T(Sn)a
LE::TZa

ins:: Tna—=Keeptna—=Pushtna—t
ins (Br node) =inode
where
iSp~n=
Npa—=Keeptna—=Pushtna—t
i =undefined

ins:: Tna—=Keeptna—=Pushtna—t
ins (Br node) =inode
where
iSp~n=
Npa—=Keeptna—=Pushtna—t
i =undefined

data N n a
=Tl (Tna)a(Tna)
| TR (Tna)a(Tna)a(Tna)

ins:: Tna—=Keeptna—=Pushtna—t
ins (Br node) =inode
where
iSp~n=
Npa—=Keeptna—=Pushtna—t
i (T abcde) keep push
| x == = undefined
| X < b=undefined

data N n a
=Tl (Tna)a(Tna)
| TR (Tna)a(Tna)a(Tna)

ins:: Tna—=Keeptna—=Pushtna—t
ins (Br node) =inode
where
iSp~n=
Npa—=Keeptna—=Pushtna—t
i (T abcde) keep push
| x == = undefined
| X < b=undefined
where
_=Kkeep::Tna—t
_=push:Tna—a—=Tna—t

ins:: Tna—=Keeptna—=Pushtna—t
ins (Br node) =inode
where
iSp~n=
Npa—=Keeptna—=Pushtna—t
i (T abcde) keep push
| x==b=Lkeep (t2axcde)
| X < b=undefined
where
_=Kkeep::Tna—t
_=push:Tna—a—=Tna—t

iSp~n=
Npa—=Keeptna—=Pushtna—t
i (T abcde) keep push
| x==b=Lkeep (t2axcde)
| X < b=undefined
where
_=Kkeep::Tna—t
_=push:Tna—a—=Tna—t

i:Sp~n= Npa—Keeptna—=Pushtna—t
i (TR abcde) keep push
| X < b=undefined
where
_=keep::Tna—t
_=push:Tna—a—=Tna—>t

i:Sp~n= Npa—Keeptna—=Pushtna—t
i (TR abcde) keep push
| X < b= ins a rkeep rpush
where
_=keep::Tna—t
_=push:Tna—a—=Tna—>t

rkeep::Tpa—*t
rkeep k = undefined

rpush:: Tpa—a—=Tpa—t
rpush p q r = undefined

i:Sp~n= Npa—Keeptna—=Pushtna—t
i (TR abcde) keep push
| X < b= ins a rkeep rpush
where
_=keep::Tna—t
_=push:Tna—a—=Tna—>t

rkeep::Tpa—*t
rkeep k= keep (t kbcd e)

rpush:: Tpa—a—=Tpa—t
rpush p q r = undefined

i:Sp~n= Npa—Keeptna—=Pushtna—t
i (TR abcde)keep push
| X < b= ins a rkeep rpush
where
_=keep::Tna—t
_=push:Tna—a—=Tna—>t

rkeep::Tpa—*t
rkeep k= keep (t kbcd e)

rpush:: Tpa—a—=Tpa—t
rpushpqr-=
keep (t1 (1 pgqr)b(tlcde))

Could not deduce (p ~S p)

i:Sp~n= Npa—Keeptna—=Pushtna—t
i (TR abcde)keep push
| X < b= ins a rkeep rpush
where
_=keep::Tna—t
_=push:Tna—a—=Tna—>t

rkeep::Tpa—*t
rkeep k= keep (t kbcd e)

rpush:: Tpa—a—=Tpa—t
rpushpqr-=
push (tlpgqr)b(tlcde)

Could not deduce (p ~S p)

delete 3

delete

delete 3

underflow

delete 3

delete 3

delete 3

pull | 4]6

delete 4

search

replace with predecessor

delete 4

delete 4

delete 4

delete 4

delete 4

