
Getting data structures right
with GADTs and nested types

@mbrcknl
matthew.brecknell.net

1

2

3

0

1

2

3

0

2-3 B-tree comprises either:
• {one, two} data + {two, three} subtrees
• a leaf containing nothing at all

Every leaf is equidistant from the root

Data are ordered left to right

O(log n)
search

1

2

3 4

5

6

7

8

9

10 11
insertion
deletion

2-3 B-tree comprises either:
• {one, two} data + {two, three} subtrees
• a leaf containing nothing at all

data T a
 = Br (N a)
 | LF

T1

T1

LF

LF

LF

LF

T1

T1

LF
O(n) search

data N a
 = T1 (T a) a (T a)
 | T2 (T a) a (T a) a (T a)

2-3 B-tree comprises either:
• {one, two} data + {two, three} subtrees
• a leaf containing nothing at all

data T a
 = Br (N a)
 | LF

ghci> rB
Br :: N a → T a

t:

2-3 B-tree comprises either:
• {one, two} data + {two, three} subtrees
• a leaf containing nothing at all

data T a where
 Br :: N a → T a
 LF :: T a

data T a
 = Br (N a)
 | LF

2-3 B-tree comprises either:
• {one, two} data + {two, three} subtrees
• a leaf containing nothing at all

Every leaf is equidistant from the root

2-3 B-tree comprises either:
• {one, two} data + {two, three} subtrees
• a leaf containing nothing at all

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

Subtrees must have the same height

data Nat = Z | S Nat

data N n a
 = T1 (T n a) a (T n a)
 | T2 (T n a) a (T n a) a (T n a)

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

data Nat = Z | S Nat

data N n a
 = T1 (T n a) a (T n a)
 | T2 (T n a) a (T n a) a (T n a)

Data must be ordered left to right

insert 4

2

1 3

4

search

insert 4

2

1 3

4

search

insert 4

2

1 3 43

insert new node

insert 4

2

1 3 43

2

reconstruct search path

insert 4

2

1 3 43

2

garbage-collect old version

insert 4

1 43

2

4

insert 5

1 43

2

3 5

overflow

4

insert 5

1 43

2

3 5

2 push

combine parent

insert 5

1 43

2

3 5

42 push

combine parent

insert 5

1 3 5

42

insert 6

1 3 5

42

6

insert

insert 7

1 3 5

42

6

overflow

7

insert 7

1 3 5

42 6

7

push

insert 7

1 3 5

42 6

7

overflow

insert 7

1 3 5

4

2 6

7

push

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

data Nat = Z | S Nat

data N n a
 = T1 (T n a) a (T n a)
 | T2 (T n a) a (T n a) a (T n a)

data Tree a where
 Tree :: T n a → Tree a

 ins = undefined

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

data Tree a where
 Tree :: T n a → Tree a

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

ins t

 ins = undefined

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

data Tree a where
 Tree :: T n a → Tree a

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins ::

ins t

Foo

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

 ins
 ins ::

couldn’t match expected type
 ‘T n a → Tree a’
 with actual type
 ‘Foo’

ins t

Foo
= undefined

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins ::

couldn’t match expected type
 ‘T n a → Tree a’
 with actual type
 ‘Foo’

ins t

T n a → Tree a
 ins = undefined

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins ::

ins t

T n a → Ins n a
 ins = undefined

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

 finish :: Ins n a → Tree a

finish (

 ins :: T n a → Ins n a

ins t)

 ins = undefined

 finish = undefined

data Ins n a
 = Keep (T n a)
 | Push (T n a) a (T n a)

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

 finish :: Ins n a → Tree a

finish (

 ins :: T n a → Ins n a

ins t)

 ins = undefined

 finish = undefined

data Ins n a
 = Keep (T n a)
 | Push (T n a) a (T n a)

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

 finish :: Ins n a → Tree a

finish (

 ins :: T n a → Ins n a

ins t)

 ins = undefined

 finish (Keep t) = Tree t
 finish (Push a b c) = Tree (t1 a b c)

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

 finish :: Ins n a → Tree a

 ins :: T n a →
 ins = undefined

 finish (Keep t) = Tree t
 finish (Push a b c) = Tree (t1 a b c)

type Keep t n a = T n a → t
type Push t n a = T n a → a → T n a → t

finish (ins t)

Ins n a

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

 finish :: Ins n a → Tree a

 ins :: T n a → Keep t n a → Push t n a → t
 ins = undefined

 finish (Keep t) = Tree t
 finish (Push a b c) = Tree (t1 a b c)

type Keep t n a = T n a → t
type Push t n a = T n a → a → T n a → t

finish (ins t)

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

 finish :: Ins n a → Tree a

 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins = undefined

 finish (Keep t) = Tree t
 finish (Push a b c) = Tree (t1 a b c)

type Keep t n a = T n a → t
type Push t n a = T n a → a → T n a → t

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins = undefined

type Keep t n a = T n a → t
type Push t n a = T n a → a → T n a → t

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

 ins = undefined

 i keep push = undefined

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins LF

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

= i
 where

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins LF

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

= i
 where
 i :: Keep t a → Push t a → t
 i keep push =

P P

couldn’t match type Z with P

undefined

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins LF

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

= i
 where
 i :: Keep t a → Push t a → tZ Z

couldn’t match type Z with P

 i keep push = undefined

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins LF = i
 where
 i :: Keep t a → Push t a → tZ Z
 i keep push = undefined
 where
 _ = keep :: T Z a → t
 _ = push :: T Z a → a → T Z a → t

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins LF = i
 where
 i :: Keep t a → Push t a → tZ Z
 i keep push = keep LF
 where
 _ = keep :: T Z a → t
 _ = push :: T Z a → a → T Z a → t

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins LF = i
 where
 i :: Keep t a → Push t a → tZ Z
 i keep push = push LF x LF
 where
 _ = keep :: T Z a → t
 _ = push :: T Z a → a → T Z a → t

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where
 ins :: T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

 ins LF = \keep push → push LF x LF
 where
 i :: Keep t a → Push t a → tZ Z
 i keep push = push LF x LF
 where
 _ = keep :: T Z a → t
 _ = push :: T Z a → a → T Z a → t

ins ::
ins

insert :: Ord a ⇒ a → Tree a → Tree a
insert x (Tree t) =
 where

T n a → Keep t n a → Push t n a → t

ins t Tree (((Tree.).).t1)

LF = \keep push → push LF x LF
 where
 i :: Keep t a → Push t a → tZ Z
 i keep push = push LF x LF
 where
 _ = keep :: T Z a → t
 _ = push :: T Z a → a → T Z a → t

T n a → Keep t n a → Push t n a → t
LF = \keep push → push LF x LF

ins ::
ins

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

T n a → Keep t n a → Push t n a → t
(Br node) = i node

ins ::
ins

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

 where
 i = undefined

T n a → Keep t n a → Push t n a → t
(Br node) = i node

ins ::
ins

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

 where
 i ::
 i = undefined

P MM

couldn’t match type ‘S P’ with ‘M’

a → Keep t a → Push t a → tN

T n a → Keep t n a → Push t n a → t
(Br node) = i node

ins ::
ins

data T n a where
 Br :: N n a → T (S n) a
 LF :: T Z a

 where
 i ::

p mm

couldn’t match type ‘S P’ with ‘M’

a → Keep t a → Push t a → tN
S p ~ m ⇒

 i = undefined

T n a → Keep t n a → Push t n a → t
(Br node) = i node

ins ::
ins
 where
 i ::

p nna → Keep t a → Push t a → tN
S p ~ n ⇒

 i = undefined

T n a → Keep t n a → Push t n a → t
(Br node) = i node

ins ::
ins
 where

 i = undefined

data N n a
 = T1 (T n a) a (T n a)
 | T2 (T n a) a (T n a) a (T n a)

 i ::
p nna → Keep t a → Push t a → tN

S p ~ n ⇒

T n a → Keep t n a → Push t n a → t
(Br node) = i node

ins ::
ins
 where

 i (T2 a b c d e) keep push

data N n a
 = T1 (T n a) a (T n a)
 | T2 (T n a) a (T n a) a (T n a)

 | x == b = undefined
 | x < b = undefined

 i ::
p nna → Keep t a → Push t a → tN

S p ~ n ⇒

T n a → Keep t n a → Push t n a → t
(Br node) = i node

ins ::
ins
 where

 i (T2 a b c d e) keep push
 | x == b =

 where
 _ = keep :: T n a → t
 _ = push :: T n a → a →T n a → t

undefined
 | x < b = undefined

 i ::
p nna → Keep t a → Push t a → tN

S p ~ n ⇒

T n a → Keep t n a → Push t n a → t
(Br node) = i node

ins ::
ins
 where

 i (T2 a b c d e) keep push
 | x == b =

 where
 _ = keep :: T n a → t
 _ = push :: T n a → a →T n a → t

keep (t2 a x c d e)
 | x < b = undefined

 i ::
p nna → Keep t a → Push t a → tN

S p ~ n ⇒

i (T2 a b c d e) keep push
 | x == b =

 where
 _ = keep :: T n a → t
 _ = push :: T n a → a →T n a → t

keep (t2 a x c d e)
 | x < b = undefined

i ::
p nna → Keep t a → Push t a → tN

S p ~ n ⇒

 | x < b = undefined

i ::
(T2 a b c d e) keep push

 where
 _ = keep :: T n a → t
 _ = push :: T n a → a →T n a → t

p nna → Keep t a → Push t a → tNS p ~ n ⇒
i

 | x < b = ins a rkeep rpush

i ::
(T2 a b c d e) keep push

 where
 _ = keep :: T n a → t
 _ = push :: T n a → a →T n a → t

p nna → Keep t a → Push t a → tNS p ~ n ⇒
i

 rkeep :: T p a → t
 rkeep k =

 rpush :: T p a → a → T p a → t
 rpush p q r =

undefined

undefined

 | x < b = ins a rkeep rpush

i ::
(T2 a b c d e) keep push

 where
 _ = keep :: T n a → t
 _ = push :: T n a → a →T n a → t

p nna → Keep t a → Push t a → tNS p ~ n ⇒
i

 rkeep :: T p a → t
 rkeep k =

 rpush :: T p a → a → T p a → t
 rpush p q r = undefined

keep (t2 k b c d e)

 keep (t1)

 | x < b = ins a rkeep rpush

i ::
(T2 a b c d e) keep push

 where
 _ = keep :: T n a → t
 _ = push :: T n a → a →T n a → t

p nna → Keep t a → Push t a → tNS p ~ n ⇒
i

 rkeep :: T p a → t
 rkeep k =

 rpush :: T p a → a → T p a → t
 rpush p q r =

keep (t2 k b c d e)

(t1 p q r) b (t1 c d e)

Could not deduce (p S p)~

 push

 | x < b = ins a rkeep rpush

i ::
(T2 a b c d e) keep push

 where
 _ = keep :: T n a → t
 _ = push :: T n a → a →T n a → t

p nna → Keep t a → Push t a → tNS p ~ n ⇒
i

 rkeep :: T p a → t
 rkeep k =

 rpush :: T p a → a → T p a → t
 rpush p q r =

keep (t2 k b c d e)

(t1 p q r) b (t1 c d e)

Could not deduce (p S p)~

delete 3

31

2

4

75

6

delete

delete 3

1

2

4

75

6

underflow

delete 3

1 2

4

75

6

pull

delete 3

1 2

4

75

6

pull

delete 3

1 2

4

75

6 pull

delete 4

3

4

search

replace with predecessor

1 75

62 8

9

delete 4

3

1 75

62 8

9

delete 4

1

2

3

75

6 8

9

delete 4

1 2

3

75

6 8

9

pull

delete 4

1 2

3

5

6

7

8

9

pull

delete 4

1 2 5

6

7

8

9

3

rotate

