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hub page for the talk.
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About you:

v" Involved in the sel4 ecosystem

v Value that sel4 is formally verified
(But why?)

? Maybe read a bit about the verification

x Maybe haven’t dug into the proofs



Let’s learn about the proofs!

- What are the proofs, and what do they mean?

- Where do I look for them, and how do | read
them?
- How do they actually provide strong

assurances?
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The tour:

- Introduction to Isabelle/HOL

- Introduction to specifications and Hoare triples
- Abstract specification

- |nvariants
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Proving if live_then _nonz_cap:

- Object becomes live
— need a capability
- from user via invocation

- Delete a cap
—> need to show not live
- show finalization achieves this



Summary:

- Specifications are like programs, but:
- in a logical language with formal semantics

- optimised for clarity
- Invariants
- a coherent collection of interdependent
properties

- extremely effective at forcing understanding



