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To ask questions, please use the 
discussion board on the virtual 

hub page for the talk.
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About you:

ü Involved in the seL4 ecosystem

ü Value that seL4 is formally verified

(But why?)

？ Maybe read a bit about the verification

x Maybe haven’t dug into the proofs
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Let’s learn about the proofs!

- What are the proofs, and what do they mean?

- Where do I look for them, and how do I read 

them?

- How do they actually provide strong 

assurances?
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The tour:

- Introduction to Isabelle/HOL

- Introduction to specifications and Hoare triples

- Abstract specification

- Invariants
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Proving if_live_then_nonz_cap:

- Object becomes live

- Delete a cap
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→ need a capability

→ need to show not live

- from user via invocation

- show finalization achieves this
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Summary:

- Specifications are like programs, but:

- Invariants

- in a logical language with formal semantics

- optimised for clarity

- a coherent collection of interdependent 

properties

- extremely effective at forcing understanding


