
Matthew Brecknell, Data61

@mbrcknl https://m.brck.nl

Introduction to the 
seL4 proofs



To ask questions, please use the 
discussion board on the virtual 

hub page for the talk.

@mbrcknl https://m.brck.nl



About you:

3



About you:

ü Involved in the seL4 ecosystem

3



About you:

ü Involved in the seL4 ecosystem

ü Value that seL4 is formally verified

(But why?)

3



About you:

ü Involved in the seL4 ecosystem

ü Value that seL4 is formally verified

(But why?)

？ Maybe read a bit about the verification

3



About you:

ü Involved in the seL4 ecosystem

ü Value that seL4 is formally verified

(But why?)

？ Maybe read a bit about the verification

x Maybe haven’t dug into the proofs

3



Let’s learn about the proofs!

- What are the proofs, and what do they mean?

- Where do I look for them, and how do I read 

them?

- How do they actually provide strong 

assurances?

4



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5

CSpec



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Isabelle/HOL

HOL4

5



= translation

= refinement

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec

Abstract 
Invariants

Isabelle/HOL

HOL4

5



= translation

= refinement

Abstract 
Invariants

Isabelle/HOL

HOL4

5

Haskell
kernel

C kernel

Binary

Abstract 
Spec

ExecSpec

CSpec

Binary spec



The tour:

- Introduction to Isabelle/HOL

- Introduction to specifications and Hoare triples

- Abstract specification

- Invariants

6



7

thread
has

Untyped
capability



7

Untyped
regionthread

has

Untyped
capability

controls



7

Untyped
regionthread

has

Untyped
capability

controls

object

object

(invokes)



7

Untyped
regionthread

has

Untyped
capability

controls
(invokes)

controls

controls

object

object



7

Untyped
regionthread

has

Untyped
capability

controls
(invokes)

controls

controls

capability 
derivation 

tree
(CDT)

descendent

descendent

object

object



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

object

object

descendent

(invokes)

object

object



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

descendent

(invokes)

object

object

object

object



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

descendent

(invokes)

object

object

object

object

unused?



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

descendent

(invokes)

object

object

object

object

unused?

!

!



7

Untyped
regionthread

has

Untyped
capability

controls
(invokes)

object

object

!

!



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

descendent

(invokes)

object

object

object

object



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

descendent

(invokes)

object

object

object

object

finalise!



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

descendent

(invokes)

object

object

object

object

finalise!



7

Untyped
regionthread

has

Untyped
capability

controls
(invokes)

object

object

object

object



7

Untyped
regionthread

has

Untyped
capability

controls
(invokes)

object

object



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

object

object

descendent

(invokes)

object

object



7

Untyped
regionthread

has

Untyped
capability

controls
(invokes)

object

object

object

object



7

Untyped
regionthread

has

Untyped
capability

controls
(invokes)

object

object



7

Untyped
regionthread

capability 
derivation 

tree
(CDT)

has

Untyped
capability

controls

controls

controls

descendent

object

object

descendent

(invokes)

object

object



Proving if_live_then_nonz_cap:

- Object becomes live

- Delete a cap

8

→ need a capability

→ need to show not live

- from user via invocation

- show finalization achieves this



8

Summary:

- Specifications are like programs, but:

- Invariants

- in a logical language with formal semantics

- optimised for clarity

- a coherent collection of interdependent 

properties

- extremely effective at forcing understanding


