Introduction to the
selL4 proofs

Matthew Brecknell, Data61
@mbrcknl https://m.brck.nl

@ 55‘[4 Summit 3rd seL4 Summit - November 15-18, 2020

To ask questions, please use the
discussion board on the virtual
hub page for the talk.

@mbrcknl https://m.brck.nl

@ 55‘[4 Summit 3rd seL4 Summit - November 15-18, 2020

About you:

About you:

v" Involved in the sel4 ecosystem

About you:

v" Involved in the sel4 ecosystem

v Value that sel4 is formally verified
(But why?)

About you:

v" Involved in the sel4 ecosystem

v Value that sel4 is formally verified
(But why?)

? Maybe read a bit about the verification

About you:

v" Involved in the sel4 ecosystem

v Value that sel4 is formally verified
(But why?)

? Maybe read a bit about the verification

x Maybe haven’t dug into the proofs

Let’s learn about the proofs!

- What are the proofs, and what do they mean?

- Where do I look for them, and how do | read
them?
- How do they actually provide strong

assurances?

I = translation

@ = refinement

-
Isabelle/HOL

Abstract Abstract
Spec Invariants

¢

Haskell
kernel * ExecSpec

A

Ckernel | JIEED CSpec

J l;::::@:::::::::::::::::

Binary | JM | Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
|

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o
I ..
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
|

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o

i e ———

|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
|

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o
I ..
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

Abstract Abstract
Spec Invariants

C kernel

Haskell

e * ExecSpec
|
|
|
|
|
|
|
|
|

|
|
Binary | MM | Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
|

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o
I ..
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
| Spec Invariants
|
|
|
|

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o N S
I ..
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
|

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o
I =
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
|

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o
I ..
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
i @

Haskell I

kernel : ExecSpec
|
I @
|
|
i

C kernel | CSpec
|
S
B
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
|

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o
I ..
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract Abstract
: Spec Invariants
|
|
|
i @

Haskell I

kernel : ExecSpec
|
I @
|
|
i

C kernel | CSpec
|
S
B
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

Abstract Abstract
Spec Invariants

¢

Haskell
kernel * ExecSpec

A

Ckernel | JIEED CSpec

J l;::::@:::::::::::::::::

Binary | JM | Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

Abstract Abstract
Spec Invariants

¢

Haskell
kernel * ExecSpec

Ckernel | JIEED CSpec

J l;i:::::@:::::::::i::::::::::::

Binary | JM | Binary spec o »O »O »O

I = translation

@ = refinement

Haskell
kernel

C kernel

Binary

-
Isabelle/HOL

Abstract
Spec

¢

* ExecSpec

Abstract
Invariants

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
i Abstract ? > ? > 9 > ?
| Spec
|
|
s
Haskell . > .
kernel *l ExecSpec ? ? 9 e
|
|
|
- 3
C kernel -I CSpec o) »O »O »O
A A A A
I~ N N B R
B Y I B
|
Binary | JM | Binary spec o »O »O »O

I = translation

@ = refinement

Haskell
kernel

C kernel

Binary

-
Isabelle/HOL

Abstract
Spec

¢

ExecSpec

I = translation

@ = refinement

-
Isabelle/HOL

|
|
|
|
|
| Abstract ~ Abstract
: Spec Invariants
|
|
|
i

Haskell I

kernel : ExecSpec
|
|
|
|
i

C kernel | CSpec
|
o
I ..
|

Binary Binary spec

I = translation

@ = refinement

-
Isabelle/HOL

Abstract Abstract
Spec Invariants

¢

Haskell
kernel * ExecSpec

A

Ckernel | JIEED CSpec

J l;::::@::::_:_::::::::::::

Binary | JM | Binary spec

The tour:

- Introduction to Isabelle/HOL

- Introduction to specifications and Hoare triples
- Abstract specification

- |nvariants

thread

has

Untyped
capability

»
»

thread

has

Untyped
capability

»
»

controls

Untyped
region

thread

has

Untyped
capability

(invokes)

»
»

controls

Untyped
region

object

object

Untyped
capability

has controls Untyped
thread : > > region
(invokes)

object

A 4

controls

object

\ 4

controls

Untyped

capability
has controls Untyped
thread - > region
(invokes)
- descendent
object
capability R
derivation controls
tree
(CDT) descendent
object

\ 4

controls

Untyped

capability
has controls Untyped
thread : > > region
(invokes)
- descendent
object | .~—— | object
capability .
derivation controls 0
tree
(CDT) descendent
object object
s
controls ' —_ »

Untyped

capability
has controls Untyped
thread) > > region
(invokes)
- descendent
object | .~—— | object
capability x .
derivation controls o
tree]
(CDT) descendent
object object
s
x controls ' —_ »

Untyped

capability
has controls Untyped
thread : > > region
(invokes)
- descendent
object | .~—— | object
capability x .
derivation controls o
tree 7 /'
(CDT) descendent unused?
\ object object
s
5 x controls ' —_ »

Untyped

capability
has controls Untyped
thread : > > region
(invokes)
- descendent
. ® .
object | .~—— | object
capability x .
derivation controls o
tree 7 /'
(CDT) descendent unused?
\ object ! object
R
5 x controls ' — »

thread

has

Untyped
capability

(invokes)

»
»

controls

v

Untyped
region

o
a—

o
>

object

object

Untyped

capability
has controls Untyped
thread) > > region
(invokes)
- descendent
object | .~—— | object
capability x .
derivation controls o
tree]
(CDT) descendent
object object
s
x controls ' —_ »

Untyped

capability
has controls Untyped
thread) > > region
(invokes)
- descendent
object | .~—— | object
capability x .
derivation controls o
tree 7 /'
(CDT) descendent finalise!
\ object object
——
5 x controls ' — »

Untyped

capability
has controls Untyped
thread : > > region
(invokes)
B descendent
object object
capability x .
derivation controls
tree 7 /'
(CDT) descendent finalise!
\ object object
x controls i

thread

has

Untyped
capability

(invokes)

»
»

controls

Untyped
region

object

object

object

object

thread

has

Untyped
capability

(invokes)

»
»

controls

Untyped
region

object

object

Untyped

capability
has controls Untyped
thread : > > region
(invokes)
- descendent
object | .~—— | object
capability .
derivation controls 0
tree
(CDT) descendent
object object
s
controls ' —_ »

thread

has

Untyped
capability

(invokes)

»
»

controls

Untyped
region

object

object

object

object

thread

has

Untyped
capability

(invokes)

»
»

controls

Untyped
region

object

object

Untyped

capability
has controls Untyped
thread : > > region
(invokes)
- descendent
object | .~—— | object
capability .
derivation controls 0
tree
(CDT) descendent
object object
s
controls ' —_ »

Proving if live_then _nonz_cap:

- Object becomes live
— need a capability
- from user via invocation

- Delete a cap
—> need to show not live
- show finalization achieves this

Summary:

- Specifications are like programs, but:
- in a logical language with formal semantics

- optimised for clarity
- Invariants
- a coherent collection of interdependent
properties

- extremely effective at forcing understanding

