Explaining the selL4 integrity theorems

Matt Brecknell
Kry10 Limited

selL.4 Summit — Munich = October 2022

File Browser | Documentation

record abstract state =

kheap

cdt

is original cap
cur thread

idle thread
machine state
interrupt irq node
interrupt states
arch state

text oll
ype @{typ

record 'a state = ab
section
text
definition
do machine op :: "

where
"do machine op mop

mit-2020/14v/spec/abstract

@{text "interrupt irq node irq"}
) ch

1bs

kheap

cdt

"cslot ptr = bool"
obj ref

obj ref

machine state

"irq = obj ref"
"irq = Hrq state"
arch state

SUERds Ul

stract state + exst

(machine state, 'a) nondet monad

do

ms < gets machine state;

B
B | v | Output | Query | Sledgehammer

542,32 (17563/22892)

Symbols

for @{typ "'a"}

ecl
[(

('z state, 'a) nondet monad"

Purge

efault (ASpec)

Machine A
MiscMachine_A

xceptionTypes_A

apRights_A
A
2 Structs A
A
Deterministic_A
xceptions_A

KHeap A

5] m RAIBRIBIRIEIE
=1 BB s
o 11 5 | B4 A
o) Y
< = o
® @ °
w g -
=
Y
o
o
A w
>

ArchipcCancel A
IpcCancel A
Ar(hl(h A

S
o
o
0
>

Archinvocation_A
Invocations_A
ArchRetype A
A
_Space_A
Space_A
A

(—\4 (9] }‘ B
~ 1) ~
[a) n - 4
g — o — ~ %
A all<lie
>~ [| % |
J © ’:} -
a
>

2
>

Ipc_A

Archinterrupt_A

Interrupt_ A

ArchDecode A

Jecode A

>15 —
< 3

@ =

a {

] >

>

(isabelle,isabelle, UTF-8-Isabelle) U..

Introduction to the sel4 proofs

1 year ago

This is a guided tour of the pt

juction to I

~N A Phhia va
",,_I on tnis ve

'he video is b

sion of the selL4 verification manifest,

https://github.com/selL4/verification-manifest/blob/c956980aa207bd8c92252ba3e642dfb393e7cd89/default.xml

which roughly corre

ponds to selL4-12.0.0:

S3LI03Y] | @315 | HID

/777MB 11:23 am

Up next)

Explaining selL4 integrity

Matt Brecknell

vimeo.com/mbrcknl

Oct 2022

2

Context

Integrity Confidentiality
A A
enforces
maintains
Abstract spec
A

implements

C spec

implements

A

Binary spec

Invariants

Explaining selL4 integrity

Invariant proofs show that the specification
is internally consistent

Matt Brecknell

Oct 2022

3

Context

Integrity Confidentiality
A A
enforces
maintains
Abstract spec
A

implements

C spec

implements

A

Binary spec

Invariants

Explaining selL4 integrity

Security proofs show that selL4 enforces access control
- Integrity: for write operations
- Confidentiality: for read operations

Invariant proofs show that the specification
is internally consistent

Matt Brecknell

Oct 2022

4

Context

Integrity

Confidentiality

A A

enforces

maintains

Explaining selL4 integrity

Security proofs show that selL4 enforces access control
- Integrity: for write operations
- Confidentiality: for read operations

Abstract spec

implements

A

C spec

implements

A

Binary spec

Invariant proofs show that the specification

Invariants . .
is internally consistent

seLL4 Enforces Integrity

Thomas Sewell!, Simon Winwood!2, Peter Gammie!, Toby Murray!:2, June
Andronick!?, and Gerwin Klein!-?

! NICTA, Sydney, Australia*
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{first-name.last-name}@nicta.com.au

Abstract. We prove the enforcement of two high-level access control
properties in the sel.4 microkernel: integrity and authority confinement.
Integrity provides an upper bound on write operations. Authority con-
finement provides an upper bound on how authority may change. Apart
from being a desirable security property in its own right, integrity can
be used as a general framing property for the verification of user-level
system composition. The proof is machine checked in Isabelle/HOL and
the results hold via refinement for the C implementation of the kernel.

ITP 2011

Matt Brecknell

Oct 2022

5

Context

Explaining selL4 integrity Matt Brecknell

- Integrity: for write operations
- Confidentiality: for read operations

Integrity Confidentiality
A A
enforces
maintains
Abstract spec
A

implements

C spec

implements

A

Binary spec

Invariants

is internally consistent

seLL4 Enforces Integrity

Thomas Sewell!, Simon Winwood!2, Peter Gammie!, Toby Murray!:2, June
Andronick!?, and Gerwin Klein!-?

! NICTA, Sydney, Australia*
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{first-name.last-name}@nicta.com.au

Abstract. We prove the enforcement of two high-level access control
properties in the sel.4 microkernel: integrity and authority confinement.
Integrity provides an upper bound on write operations. Authority con-
finement provides an upper bound on how authority may change. Apart
from being a desirable security property in its own right, integrity can
be used as a general framing property for the verification of user-level
system composition. The proof is machine checked in Isabelle/HOL and
the results hold via refinement for the C implementation of the kernel.

ITP 2011

Security proofs show that selL4 enforces access control

Invariant proofs show that the specification

Does integrity apply
to dynamic systems?

Oct 2022

6

Concepts

state

Integrity

Do we allow the transition?

Explaining selL4 integrity

Matt Brecknell

Oct 2022

/

Concepts

state

Integrity

Do we allow the transition?

Frame

Frame

subject =t

write by t allowed

write by t not allowed

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022

Look at an individual state to determine the
authority held by the subject.

Look at a pair of states to determine whether a
change may be allowed for the subject, given its
authority.

8

Concepts

policy

Policy refinement

Are the authorities in the state
represented in the policy?

state

Integrity

Do we allow the transition?

TCB

CNode

PT

Frame

Frame

subject =t

write by t allowed

write by t not allowed

TCB

@\ feYel=

PT

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022

Look at an individual state to determine the
authority held by the subject.

Look at a pair of states to determine whether a
change may be allowed for the subject, given its
authority.

9

Concepts

policy

Policy refinement

Are the authorities in the state
represented in the policy?

state

Integrity

Do we allow the transition?

TCB

CNode

PT

Frame

Frame

subject =t

write by t allowed

write by t not allowed

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022

TCB

@\ feYel=

PT

Look at an individual state to determine the
authority held by the subject.

Look at a pair of states to determine whether a
change may be allowed for the subject, given its
authority.

10

Concepts

policy

Authority confinement
s the policy preserved (p1 = po)?

Policy refinement

Are the authorities in the state
represented in the policy?

state

Integrity

Do we allow the transition?

TCB

CNode

PT

Frame

Frame

subject =t

write by t allowed

write by t not allowed

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022

TCB

@\ feYel=

PT

Look at an individual state to determine the
authority held by the subject.

Look at a pair of states to determine whether a
change may be allowed for the subject, given its
authority.

11

) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 12
The process of theorem proving

1. State definitions

- Definitions give names to expressions, functions, predicates, relations

2. Prove theorems

- Theorems are also logical expressions with names
- But they require proofs

) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 13
The process of theorem proving

1. State definitions

- Definitions give names to expressions, functions, predicates, relations

— <True iff all authorities in state s are represented in policy p>
pas_refined p s

Il
O

— <True 1ff the change between states sp and s;
is authorised for the current subject by policy p>» 4

integrity p so S1 = . pas_refined p so

\4
2. Prove theorems

- Theorems are also logical expressions with names Q . . g
integrity p So S:

- But they require proofs

) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 14
The process of theorem proving

1. State definitions

- Definitions give names to expressions, functions, predicates, relations

— <True iff all authorities in state s are represented in policy p>

definition pas_refined p s = p P
— <True 1ff the change between states sp and s:
is authorised for the current subject by policy p>» 4 _ 4
definition integrity p so s1 = .. . auth_confinement .
pas_refined p So | -------ommmmmm i mme » | pas_refined p si
v . kernel_integrity '

2. Prove theorems H
- Theorems are also logical expressions with names @ . . g
integrity p So S:

- But they require proofs

theorem kernel_integrity:
— <If the subject calls the kernel in a state sp where pas_refined p se¢ 1s True,
then the kernel exits 1n a state s; where integrity p se s: 1s True»

theorem auth_confinement:
— <If the subject calls the kernel in a state sp where pas_refined p se¢ 1s True,
then the kernel exits 1n a state s; where pas_refined p s: is True»

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 15
Summary

How to show integrity

1. Define an access control policy
a. ldentify components, i.e. label system resources
b. Define an authority graph, i.e. arrows between components

2. Show policy refinement for the current state
a. Show that protection state maps onto the authority graph
b. Show well-formedness for the subject

3. The theorems establish that
a. State changes initiated by the subject are bounded by the policy
b. The policy is maintained for the subject

4. For static systems
- Use atool to check well-formedness, and a trustworthy loader

5. For dynamic systems
- Prove that trusted components establish well-formed policies for their subordinates

)) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 16
Define an access control policy

Define components

TCB TCB
- Draw labelled boxes around resources y EP *
- Usually, groups threads with all their private resources CNode CNode
- Separate shared resources from their owners Y XA % :
PT NTFN PT
Frame Frame
RW RW

pasObjectAbs :: obj_ref = 'label

UT Frame UT

Define an access control policy

Define components

- Draw labelled boxes around resources
- Usually, groups threads with all their private resources
- Separate shared resources from their owners

pasObjectAbs obj_ref = 'label

Explaining selL4 integrity

Client

TCB

[\

Matt Brecknell

Server endpoint

Wl EP M~ R
/ T
Client ntfn
} 4
S NTFN
\ Shared mem /
RW \ / RW
Frame

\ /

Oct 2022

17

)) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 18
Define an access control policy

= Client Server
De Ine Components Server endpoint
TCB TCB
- Draw labelled boxes around resources }/' EP '\{
- Usually, groups threads with all their private resources CNode | 1 CNode
: AN Client ntfn 1
- Separate shared resources from their owners v } e v
PT S NTFN PT
\ 4 \ / A\ 4
Frame % Shared mem 4 Frame
pasObjectAbs :: obj ref = 'label N - v
UT rame UT
Define an authority graph
- Arrows between components, labelled with authority types SyncSend Server Receive
endpoint \
Client Receive > no’gi‘liic?;[ion < Notify Server
pasPolicy :: (‘label x auth x 'label) set

) Shared ,
Read + Write memory Read + Write

)) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 19
Define an access control policy

= Client Server
De Ine Components Server endpoint
- Draw labelled boxes around resources 1CB }/' EP - iy 1CB
- Usually, groups threads with all their private resources CNode i S— : CNode
5 lient Ntrn
- Separate shared resources from their owners v = = v
PT T NTEN W PT
\ 4 \ / A\ 4
Frame % Shared mem 4 Frame
pasObjectAbs :: obj ref = 'label N - v
Define an authority graph
- Arrows between components, labelled with authority types SyncSend Server Receive
endpoint \
Client Receive > no’gi‘liic?;[ion < Notify Server
pasPolicy :: (‘label x auth x 'label) set
) Shared ,
Read + Write memory Read + Write
auth = SyncSend N
Notify
Recelve endpoints and notifications
Grant
Reset B
Call
Reply protected procedure calls
DeleteDerived |
Read frame contents
Write _
Control | TCBs, CNodes, page tables,

IRQs, untyped memory

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 20
Summary

How to show integrity

1. Define an access control policy
a. ldentify components, i.e. label system resources
b. Define an authority graph, i.e. arrows between components

2. Show policy refinement for the current state
a. Show that protection state maps onto the authority graph
b. Show well-formedness for the subject

3. The theorems establish that
a. State changes initiated by the subject are bounded by the policy
b. The policy is maintained for the subject

4. For static systems
- Use atool to check well-formedness, and a trustworthy loader

5. For dynamic systems
- Prove that trusted components establish well-formed policies for their subordinates

. . Explaining selL4 integrity Matt Brecknell ~ Oct 2022 21
Show policy refinement

Show that protection state maps onto the authority graph

- Every authority inherent in the state must be represented in the policy

- pas_refined covers all the ways authority can present SyncSend eﬁg;"oei:‘t w
Recei i '
Client eCelve > (?l.'ent. « NI Server
notification
) Shared _
Read + Write memory Read + Write
Client Server
Server endpoint
TCB TCB
W L~ EP M~ R
CNi d i T~ CNi d
ode ode
"~ ']
I \ Client ntfn / T
PT TS NTEN [W PT
TN '
Frame \ Shared mem / Frame
RWIIN, | RW
UT Frame UT

i) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 22
2. Show policy refinement

a. Show that protection state maps onto the authority graph
- Every authority inherent in the state must be represented in the policy
- pas_refined covers all the ways authority can present SyncSend eﬁjz)"oei;t w
Recel i Notify
Client LN not(i:flilc?;ttion Y Server
Examples Shared
Read + Write memory Read + Write
- If a TCB has a capability to a CNode, then the TCB’s component
nas Control over the CNode's component
TCB | A A TCB
I » Control OR | C * C
CNode | 5 B CNade Client Server
Server endpoint
TiB WA B PR TiB
- If a CNode has a capability to untyped memory, then the CNode's CNode | T cNode
' ™~ '
component has Control over the untyped memory's component, ! ~ | Semntin // !
: R — 1 W
and also the components of all objects allocated from the PlT N NN > PlT
untyped memaory. Frame \ Shared mem / Frame
RWIN A RW
CNode | A & CNode uT e uT
Control
ur |B| = | B OR urT (D | = | D
; Control '
Obj |C C Obj

i) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 23
Show policy refinement

Show that protection state maps onto the authority graph

- Every authority inherent in the state must be represented in the policy

- pas_refined covers all the ways authority can present SyncSend eﬁg;"oei:‘t w
Client Receive > (.DI.ient. - e Server
notification
Examples _ Shared _
Read + Write memory Read + Write

- If a page table has a write-enabled mapping for a frame, then the

page table’s component has Write authority to the Frame’s component
PT | A a PT
! P | Write OR R C
Frame | B B RIS Client Server
Server endpoint
TiB w o B LR TiB
- If a TCB is blocked sending on an endpoint, then the TCB's component CNode [Y cNode
nas SyncSend authority to the TCB's component ! \\ Client ntfn // !
PT RS NTRN W PT
TN '
TCB | A A
Frame \ Shared mem / Frame
BlockedOnSend » SyncSend RV ING R
v Frame
v Ut Ut
EP | B B

Show policy refinement

Show that the policy is well-formed for the subject

- pas_refined imposes extra conditions called “well-formedness conditions”

- These conditions simplify the model by restricting it to sensible system designs

The important conditions

- Grant authority requires mutual Control

It a policy
has either

A

Grant

A\ 4

EP

Receive

B

or

A

Call

EP

Receive

Grant

then it must
also have

- The subject cannot have Control over another component

If a policy has

A

Control

then A cannot be the subject

Control

Control

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022

SyncSend Server Receive
endpoint \

Receive ' ' ‘

Client > (?Illent. = Notify Server
notification
) Shared _
Read + Write memory Read + Write

24

i) Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 25
Show policy refinement

Show that the policy is well-formed for the subject

- pas_refined imposes extra conditions called “well-formedness conditions”

- These conditions simplify the model by restricting it to sensible system designs SyncSend e‘:’gz’oei;t ‘w
Client Receive > (?I.ient. - Notity Server
: . notification
The important conditions
Read + Writ Sharee e Read + Writ
: . ead + Write ead + Write
- Grant authority requires mutual Control memon
A A A
Grant Call
-Nolellfe § § then it must
|O. Y EP or EP Control Control
has either ‘ also have
Receive Receive | | Grant
x 5 5 Policies are subjective

- A policy identifies the component taking the current action

- The subject cannot have Control over another component , , : .
Policy refinement is subjective

A - Changing the subject may affect policy well-formedness
If a policy has Control then A cannot be the subject

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 26
Summary

How to show integrity

1. Define an access control policy
a. ldentify components, i.e. label system resources
b. Define an authority graph, i.e. arrows between components

2. Show policy refinement for the current state
a. Show that protection state maps onto the authority graph
b. Show well-formedness for the subject

3. The theorems establish that
a. State changes initiated by the subject are bounded by the policy
b. The policy is maintained for the subject

4. For static systems
- Use atool to check well-formedness, and a trustworthy loader

5. For dynamic systems
- Prove that trusted components establish well-formed policies for their subordinates

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 27
3. Theorems

- If a state refines a policy, and the policy is well-formed for the subject,

then from that state...

a. Integrity N

- any transition will respect the policy pas_refined p s
kernel_integrity:
— <If the subject calls the kernet | -

in a state sp where pas_refined p so 1is True, v ~\‘kernel_integrity
then the kernel exits 1n a state s; ‘

where integrity p se¢ s:; is True> 6 v
>
integrity pe Se Si

Examples of changes permitted by integrity

- Frame contents may change if the subject has Write access to the
frame’s component

- Athread may be restarted if it's blocked receiving on an endpoint
and the subject has SyncSend to the endpoint's component

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 28
3. Theorems

- If a state refines a policy, and the policy is well-formed for the subject,

then from that state...

a. Integrity N N

auth_confinement

- any transition will respect the policy pas_refined p Sp | ---ceseeeeemereriiiiiiiiiiieenee » | pas_retined p s:

kernel_integrity:

— <If the subject calls the kerpet | e .

in a state sp where pas_refined p so 1is True, v ~ kernel_integrity v
then the kernel exits in a state s; ‘

where integrity p se¢ s; is True> @ v
>
integrity pe Se Si

Examples of changes permitted by integrity

- Frame contents may change if the subject has Write access to the
frame’s component

- Athread may be restarted if it's blocked receiving on an endpoint
and the subject has SyncSend to the endpoint's component

b. Authority confinement

- any transition will maintain the policy

auth_confinement:
— <If the subject calls the kernel
in a state sp where pas_refined p s¢ 1s True,
then the kernel exits i1n a state s;
where pas_refined p s; 1s True>

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 29
3. Theorems

- If a state refines a policy, and the policy is well-formed for the subject,

then from that state...

a. Integrity N N

auth_confinement

- any transition will respect the policy pas_refined p Sp | ---ceseeeeemereriiiiiiiiiiieenee » | pas_retined p s:

kernel_integrity:

— <If the subject calls the kerpet | e .

in a state sp where pas_refined p so 1is True, v ~ kernel_integrity v
then the kernel exits in a state s; ‘

where integrity p se¢ s:; is True» @ v
>
integrity pe Se Si

Examples of changes permitted by integrity

- Frame contents may change if the subject has Write access to the
frame’s component
- Athread may be restarted if it's blocked receiving on an endpoint

and the subject has SyncSend to the endpoint’'s component Theorems are subjective

- They require that the current thread belongs to the subject
- The changes allowed by integrity depend on the subject

b. Authority confinement

- any transition will maintain the policy

auth_confinement:
— <If the subject calls the kernel
in a state sp where pas_refined p s¢ 1s True,
then the kernel exits i1n a state s;
where pas_refined p s; 1s True>

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 30
Summary

How to show integrity

1. Define an access control policy
a. ldentify components, i.e. label system resources
b. Define an authority graph, i.e. arrows between components

2. Show policy refinement for the current state
a. Show that protection state maps onto the authority graph
b. Show well-formedness for the subject

3. The theorems establish that
a. State changes initiated by the subject are bounded by the policy
b. The policy is maintained for the subject

4. For static systems
- Use atool to check well-formedness, and a trustworthy loader

5. For dynamic systems
- Prove that trusted components establish well-formed policies for their subordinates

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 31

Subjectivity
- The component currently taking an action is called the “subject”

Policies are subjective

- Every policy identifies one of its components as the current subject

Policy refinement is subjective

- The well-formedness of a policy depends on the choice of subject — Switching subjects requires switching policies
- The subject may not have Control over another component _ What gives us the right to do that?

The theorems are subjective

- The current thread must belong to the current subject
- Changes permitted by integrity depend on the subject

Q subject = A Q subject =B Q

YY) \ / S1 \ / S2
pas_refined pa So pas_refined pa si pas_refined ps si pas_refined ps s>

> _— >
authority confinement 777 authority confinement

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022

Static Systems

Constraints

- No component has Control over another component
- No authority to redistribute resources

Payoft Subjectivity of well-formedness
- Without Control, policy well-formedness is no longer subjective - The subject cannot have Control over another component
- Therefore, policy switches are free!
A
- If policy refinement holds for the initial state, then it holds always If a policy has Control then A cannot be the subject
B

To ensure integrity

- Use a system build tool that generates capDL
- It should check well-formedness for all components

- Use a verified capDL loader

Q subject = A Q subject =B Q

YY) \ / S1 \ / S2
pas_refined pia,Br So pas_refined pia,B} Si pas_refined pia,B} Si pas_refined pia,B} S2

> _— >
authority confinement authority confinement

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 33

5. Dynamic Systems

Resources may be reconfigured by a trusted component

A trusted component may have Control over its subordinates
To treat it as subject, we need to redraw its boundary around its subordinates
Switching away from a trusted component requires proof that it establishes a new well-formed policy

P{A,B,C,D,E,F} P{A,B,C,S2} P{A,B,C,S2} P{A,B,C,D,G}
S1 S S1 S1
i_é_&é_i i_é_ié_& i_é_ié_i i_é_&é_i
A B C A B C A B C A B C
S2 S2 S2 S2
v _é_ y é_ ! ey e ! _é_ v
D = F DE F_ D G _ D G

subject = S2

Q subject € {A,B,C,D,E,F} Q Q subject € {A,B,C,D,G}
> > >

So S1 S2

\ \ \

pas_refined pia,s,c,p,E,F} So pas_refined pi{a,s,c,s2} Si1 pas_refined pi¢a,s,c,p,6} S2

Explaining seL4 integrity =~ Matt Brecknell ~ Oct 2022 34
Summary

How to show integrity

1. Define an access control policy
a. ldentify components, i.e. label system resources
b. Define an authority graph, i.e. arrows between components

2. Show policy refinement for the current state
a. Show that protection state maps onto the authority graph
b. Show well-formedness for the subject

3. The theorems establish that
a. State changes initiated by the subject are bounded by the policy
b. The policy is maintained for the subject

4. For static systems
- Use atool to check well-formedness, and a trustworthy loader

5. For dynamic systems
- Prove that trusted components establish well-formed policies for their subordinates

