
Kry10 Limited

Matt Brecknell

Explaining the seL4 integrity theorems

seL4 Summit — Munich — October 2022



Matt Brecknell 2Explaining seL4 integrity Oct 2022

vimeo.com/mbrcknl



Matt Brecknell 3Oct 2022Explaining seL4 integrity

maintains

implements

ConfidentialityIntegrity

Invariants

enforces

Binary spec

implements

C spec

Abstract spec
Invariant proofs show that the specification

is internally consistent

Context



Matt Brecknell 4Oct 2022Explaining seL4 integrity

maintains

implements

ConfidentialityIntegrity

Invariants

enforces

Binary spec

implements

C spec

Abstract spec

Security proofs show that seL4 enforces access control

- Integrity: for write operations

- Confidentiality: for read operations

Context

Invariant proofs show that the specification

is internally consistent



Matt Brecknell 5Oct 2022Explaining seL4 integrity

maintains

implements

ConfidentialityIntegrity

Invariants

enforces

Binary spec

implements

C spec

Abstract spec

Security proofs show that seL4 enforces access control

- Integrity: for write operations

- Confidentiality: for read operations

seL4 Enforces Integrity

Thomas Sewell1, Simon Winwood1,2, Peter Gammie1, Toby Murray1,2, June
Andronick1,2, and Gerwin Klein1,2

1 NICTA, Sydney, Australia?
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{first-name.last-name}@nicta.com.au

Abstract. We prove the enforcement of two high-level access control
properties in the seL4 microkernel: integrity and authority confinement.
Integrity provides an upper bound on write operations. Authority con-
finement provides an upper bound on how authority may change. Apart
from being a desirable security property in its own right, integrity can
be used as a general framing property for the verification of user-level
system composition. The proof is machine checked in Isabelle/HOL and
the results hold via refinement for the C implementation of the kernel.

1 Introduction

Access control is one of the primary security functions that operating system
(OS) kernels provide. It is used to enforce confidentiality and its dual, integrity.
Confidentiality means that information may not be read without read authority.
Integrity means that information may not be written without write authority.
These properties have been analysed extensively in classical approaches such as
the Bell-LaPadula model [3]. For dynamic access control systems, such as the
capability system in the seL4 microkernel, an additional property is needed: au-
thority confinement. Authority confinement means that without explicit authority
to do so, authority may not be propagated to other subjects.

In previous work, we have verified the functional correctness of seL4 [12].
In the work presented here we capture a high-level security goal of the kernel,
and prove that it correctly enforces two of the above properties: integrity and
authority confinement.

Both properties can be seen as an upper bound on the behaviours of the
system. Given a policy, an abstraction of the system, integrity constrains the
set of possible state mutations. Similarly, authority confinement tells us that
however authority spreads dynamically within the system, the propagation of
authority is bounded by the policy abstraction. The policy provides mandatory
access control bounds; within these bounds access control is discretionary.

While integrity is an important security property on its own, it is of special
interest to formal system verification. It provides a simple framing condition for

?
NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program

ITP 2011

Context

Invariant proofs show that the specification

is internally consistent



Matt Brecknell 6Oct 2022Explaining seL4 integrity

maintains

implements

ConfidentialityIntegrity

Invariants

enforces

Binary spec

implements

C spec

Abstract spec

Security proofs show that seL4 enforces access control

- Integrity: for write operations

- Confidentiality: for read operations

seL4 Enforces Integrity

Thomas Sewell1, Simon Winwood1,2, Peter Gammie1, Toby Murray1,2, June
Andronick1,2, and Gerwin Klein1,2

1 NICTA, Sydney, Australia?
2 School of Computer Science and Engineering, UNSW, Sydney, Australia

{first-name.last-name}@nicta.com.au

Abstract. We prove the enforcement of two high-level access control
properties in the seL4 microkernel: integrity and authority confinement.
Integrity provides an upper bound on write operations. Authority con-
finement provides an upper bound on how authority may change. Apart
from being a desirable security property in its own right, integrity can
be used as a general framing property for the verification of user-level
system composition. The proof is machine checked in Isabelle/HOL and
the results hold via refinement for the C implementation of the kernel.

1 Introduction

Access control is one of the primary security functions that operating system
(OS) kernels provide. It is used to enforce confidentiality and its dual, integrity.
Confidentiality means that information may not be read without read authority.
Integrity means that information may not be written without write authority.
These properties have been analysed extensively in classical approaches such as
the Bell-LaPadula model [3]. For dynamic access control systems, such as the
capability system in the seL4 microkernel, an additional property is needed: au-
thority confinement. Authority confinement means that without explicit authority
to do so, authority may not be propagated to other subjects.

In previous work, we have verified the functional correctness of seL4 [12].
In the work presented here we capture a high-level security goal of the kernel,
and prove that it correctly enforces two of the above properties: integrity and
authority confinement.

Both properties can be seen as an upper bound on the behaviours of the
system. Given a policy, an abstraction of the system, integrity constrains the
set of possible state mutations. Similarly, authority confinement tells us that
however authority spreads dynamically within the system, the propagation of
authority is bounded by the policy abstraction. The policy provides mandatory
access control bounds; within these bounds access control is discretionary.

While integrity is an important security property on its own, it is of special
interest to formal system verification. It provides a simple framing condition for

?
NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT
Centre of Excellence program

ITP 2011

Does integrity apply

to dynamic systems?

Context

Invariant proofs show that the specification

is internally consistent



Matt Brecknell 7Oct 2022Explaining seL4 integrity

s0 s1

Integrity
Do we allow the transition?

state

Concepts



Matt Brecknell 8Oct 2022Explaining seL4 integrity

s0 s1

Integrity
Do we allow the transition?

w w

TCB

CNode

PT

Frame

Frame

TCB

CNode

PT

👍

🔥

t

subject = t

t

write by t allowed

write by t not allowed

Look at an individual state to determine the 
authority held by the subject.

Look at a pair of states to determine whether a 
change may be allowed for the subject, given its 
authority.

state

Concepts



Matt Brecknell 9Oct 2022Explaining seL4 integrity

s0 s1

Integrity
Do we allow the transition?

w w

TCB

CNode

PT

Frame

Frame

TCB

CNode

PT

👍

🔥

t

subject = t

t

write by t allowed

write by t not allowed

p0

state

policy

Policy refinement
Are the authorities in the state


represented in the policy?

Concepts

Look at an individual state to determine the 
authority held by the subject.

Look at a pair of states to determine whether a 
change may be allowed for the subject, given its 
authority.



Matt Brecknell 10Oct 2022Explaining seL4 integrity

s0 s1 s2

Integrity
Do we allow the transition?

w w

TCB

CNode

PT

Frame

Frame

TCB

CNode

PT

👍

🔥

t

subject = t

t

write by t allowed

write by t not allowed

p0

state

policy

Policy refinement
Are the authorities in the state


represented in the policy?

Concepts

Look at an individual state to determine the 
authority held by the subject.

Look at a pair of states to determine whether a 
change may be allowed for the subject, given its 
authority.



Matt Brecknell 11Oct 2022Explaining seL4 integrity

s0 s1 s2

Integrity
Do we allow the transition?

w w

TCB

CNode

PT

Frame

Frame

TCB

CNode

PT

👍

🔥

t

subject = t

t

write by t allowed

write by t not allowed

p0

state

policy p1

Policy refinement
Are the authorities in the state


represented in the policy?

Authority confinement
Is the policy preserved (p1 = p0)?

Concepts

Look at an individual state to determine the 
authority held by the subject.

Look at a pair of states to determine whether a 
change may be allowed for the subject, given its 
authority.



Matt Brecknell 12Oct 2022Explaining seL4 integrity
The process of theorem proving

1. State definitions

- Definitions give names to expressions, functions, predicates, relations

2. Prove theorems

- Theorems are also logical expressions with names

- But they require proofs 



Matt Brecknell 13Oct 2022Explaining seL4 integrity
The process of theorem proving

― ‹True iff all authorities in state s are represented in policy p›

definition pas_refined p s ≡ …

― ‹True iff the change between states s0 and s1

   is authorised for the current subject by policy p›

definition integrity p s0 s1 ≡ …

1. State definitions

- Definitions give names to expressions, functions, predicates, relations

2. Prove theorems

- Theorems are also logical expressions with names

- But they require proofs 

p

s0 s1

pas_refined p s0

integrity p s0 s1



Matt Brecknell 14Oct 2022Explaining seL4 integrity
The process of theorem proving

― ‹True iff all authorities in state s are represented in policy p›

definition pas_refined p s ≡ …

― ‹True iff the change between states s0 and s1

   is authorised for the current subject by policy p›

definition integrity p s0 s1 ≡ …

theorem kernel_integrity:

  ― ‹If the subject calls the kernel in a state s0 where pas_refined p s0 is True,

     then the kernel exits in a state s1 where integrity p s0 s1 is True›

theorem auth_confinement:

  ― ‹If the subject calls the kernel in a state s0 where pas_refined p s0 is True,

     then the kernel exits in a state s1 where pas_refined p s1 is True›

p

auth_confinement
pas_refined p s1

kernel_integrity

1. State definitions

- Definitions give names to expressions, functions, predicates, relations

2. Prove theorems

- Theorems are also logical expressions with names

- But they require proofs 

p

s0 s1

pas_refined p s0

integrity p s0 s1



Matt Brecknell 15Oct 2022Explaining seL4 integrity

How to show integrity

1. Define an access control policy

a. Identify components, i.e. label system resources

b. Define an authority graph, i.e. arrows between components


2. Show policy refinement for the current state

a. Show that protection state maps onto the authority graph

b. Show well-formedness for the subject


3. The theorems establish that

a. State changes initiated by the subject are bounded by the policy

b. The policy is maintained for the subject


4. For static systems

- Use a tool to check well-formedness, and a trustworthy loader


5. For dynamic systems

- Prove that trusted components establish well-formed policies for their subordinates

Summary



Matt Brecknell

NTFN

EP

Frame

W

W

R

R

RW RW

16Oct 2022Explaining seL4 integrity

CNode

TCB

PT

Frame

UT

CNode

TCB

PT

Frame

UT

a. Define components

pasObjectAbs :: obj_ref ⇒ 'label

1. Define an access control policy

- Draw labelled boxes around resources

- Usually, groups threads with all their private resources

- Separate shared resources from their owners



Matt Brecknell

ServerClient

Shared mem

Client ntfn

Server endpoint

NTFN

EP

Frame

W

W

R

R

RW RW

17Oct 2022Explaining seL4 integrity

CNode

TCB

PT

Frame

UT

CNode

TCB

PT

Frame

UT

a. Define components

pasObjectAbs :: obj_ref ⇒ 'label

1. Define an access control policy

- Draw labelled boxes around resources

- Usually, groups threads with all their private resources

- Separate shared resources from their owners



Matt Brecknell

ServerClient

Shared mem

Client ntfn

Server endpoint

NTFN

EP

Frame

W

W

R

R

RW RW

18Oct 2022Explaining seL4 integrity

Client 
notification

Read + Write Read + Write

SyncSend Receive

Receive Notify

Shared 
memory

Server 
endpoint

Client Server

CNode

TCB

PT

Frame

UT

CNode

TCB

PT

Frame

UT

a. Define components

b. Define an authority graph
- Arrows between components, labelled with authority types

pasObjectAbs :: obj_ref ⇒ 'label

pasPolicy :: (‘label × auth × 'label) set

1. Define an access control policy

- Draw labelled boxes around resources

- Usually, groups threads with all their private resources

- Separate shared resources from their owners



Matt Brecknell

ServerClient

Shared mem

Client ntfn

Server endpoint

NTFN

EP

Frame

W

W

R

R

RW RW

19Oct 2022Explaining seL4 integrity

Client 
notification

Read + Write Read + Write

SyncSend Receive

Receive Notify

Shared 
memory

Server 
endpoint

Client Server

CNode

TCB

PT

Frame

UT

CNode

TCB

PT

Frame

UT

a. Define components

b. Define an authority graph

pasObjectAbs :: obj_ref ⇒ 'label

pasPolicy :: (‘label × auth × 'label) set

datatype auth = SyncSend

              | Notify

              | Receive

              | Grant

              | Reset

              | Call

              | Reply

              | DeleteDerived

              | Read

              | Write

              | Control

endpoints and notifications

protected procedure calls

frame contents

TCBs, CNodes, page tables,

IRQs, untyped memory

1. Define an access control policy

- Arrows between components, labelled with authority types

- Draw labelled boxes around resources

- Usually, groups threads with all their private resources

- Separate shared resources from their owners



Matt Brecknell 20Oct 2022Explaining seL4 integrity

How to show integrity

✓ 1. Define an access control policy

a. Identify components, i.e. label system resources

b. Define an authority graph, i.e. arrows between components


2. Show policy refinement for the current state

a. Show that protection state maps onto the authority graph

b. Show well-formedness for the subject


3. The theorems establish that

a. State changes initiated by the subject are bounded by the policy

b. The policy is maintained for the subject


4. For static systems

- Use a tool to check well-formedness, and a trustworthy loader


5. For dynamic systems

- Prove that trusted components establish well-formed policies for their subordinates

Summary



Matt Brecknell

ServerClient

21Oct 2022Explaining seL4 integrity

a. Show that protection state maps onto the authority graph
- Every authority inherent in the state must be represented in the policy

- pas_refined covers all the ways authority can present

2. Show policy refinement

Client 
notification

Read + Write Read + Write

SyncSend Receive

Receive Notify

Shared 
memory

Server 
endpoint

Client Server

Shared mem

Client ntfn

Server endpoint

NTFN

EP

Frame

W

W

R

R

RW RW

CNode

TCB

PT

Frame

UT

CNode

TCB

PT

Frame

UT



Matt Brecknell

ServerClient

22Oct 2022Explaining seL4 integrity

a. Show that protection state maps onto the authority graph

2. Show policy refinement

Examples

- If a TCB has a capability to a CNode, then the TCB’s component 
has Control over the CNode’s component

- If a CNode has a capability to untyped memory, then the CNode’s 
component has Control over the untyped memory’s component, 
and also the components of all objects allocated from the 
untyped memory.

Client 
notification

Read + Write Read + Write

SyncSend Receive

Receive Notify

Shared 
memory

Server 
endpoint

Client Server

CNode

TCB A

B B

A

Control
CNode

TCB
C COR

CNode A

B
Control

C

UT

Obj
Control
B

A

C

CNode

UT

Obj

DDOR

Shared mem

Client ntfn

Server endpoint

NTFN

EP

Frame

W

W

R

R

RW RW

CNode

TCB

PT

Frame

UT

CNode

TCB

PT

Frame

UT

- Every authority inherent in the state must be represented in the policy

- pas_refined covers all the ways authority can present



Matt Brecknell 23Oct 2022Explaining seL4 integrity

a. Show that protection state maps onto the authority graph

2. Show policy refinement

Examples

- If a page table has a write-enabled mapping for a frame, then the 
page table’s component has Write authority to the Frame’s component

- If a TCB is blocked sending on an endpoint, then the TCB’s component 
has SyncSend authority to the TCB’s component

Client 
notification

Read + Write Read + Write

SyncSend Receive

Receive Notify

Shared 
memory

Server 
endpoint

Client Server

Frame

PT A

B B

A

Write
Frame

PT
C COR

ServerClient

Shared mem

Client ntfn

Server endpoint

NTFN

EP

Frame

W

W

R

R

RW RW

CNode

TCB

PT

Frame

UT

CNode

TCB

PT

Frame

UT
EP

TCB A

B B

A

SyncSendBlockedOnSend

- Every authority inherent in the state must be represented in the policy

- pas_refined covers all the ways authority can present



Matt Brecknell 24Oct 2022Explaining seL4 integrity

b. Show that the policy is well-formed for the subject
- pas_refined imposes extra conditions called “well-formedness conditions”

- These conditions simplify the model by restricting it to sensible system designs

2. Show policy refinement

Client 
notification

Read + Write Read + Write

SyncSend Receive

Receive Notify

Shared 
memory

Server 
endpoint

Client Server
The important conditions

Control
A

B

- The subject cannot have Control over another component

If a policy has then A cannot be the subject

Grant

Receive

B

A

EP

- Grant authority requires mutual Control

A

B

Control Control
If a policy

has either

then it must

also have

Call

Receive

B

A

EP

Grant

or



Matt Brecknell 25Oct 2022Explaining seL4 integrity

b. Show that the policy is well-formed for the subject
- pas_refined imposes extra conditions called “well-formedness conditions”

- These conditions simplify the model by restricting it to sensible system designs

2. Show policy refinement

Client 
notification

Read + Write Read + Write

SyncSend Receive

Receive Notify

Shared 
memory

Server 
endpoint

Client Server
The important conditions

Control
A

B

- The subject cannot have Control over another component

If a policy has then A cannot be the subject

Policies are subjective
- A policy identifies the component taking the current action

Policy refinement is subjective
- Changing the subject may affect policy well-formedness

Grant

Receive

B

A

EP

- Grant authority requires mutual Control

A

B

Control Control
If a policy

has either

then it must

also have

Call

Receive

B

A

EP

Grant

or



Matt Brecknell 26Oct 2022Explaining seL4 integrity

How to show integrity

✓

✓

1. Define an access control policy

a. Identify components, i.e. label system resources

b. Define an authority graph, i.e. arrows between components


2. Show policy refinement for the current state

a. Show that protection state maps onto the authority graph

b. Show well-formedness for the subject


3. The theorems establish that

a. State changes initiated by the subject are bounded by the policy

b. The policy is maintained for the subject


4. For static systems

- Use a tool to check well-formedness, and a trustworthy loader


5. For dynamic systems

- Prove that trusted components establish well-formed policies for their subordinates

Summary



Matt Brecknell 27Oct 2022Explaining seL4 integrity
3. Theorems

p

s0 s1

pas_refined p s0

integrity p0 s0 s1

kernel_integrity

a. Integrity
- any transition will respect the policy

theorem kernel_integrity:

  ― ‹If the subject calls the kernel

     in a state s0 where pas_refined p s0 is True,

     then the kernel exits in a state s1

        where integrity p s0 s1 is True›

Examples of changes permitted by integrity
- Frame contents may change if the subject has Write access to the 

frame’s component

- A thread may be restarted if it’s blocked receiving on an endpoint 

and the subject has SyncSend to the endpoint’s component

- If a state refines a policy, and the policy is well-formed for the subject, 
then from that state…



Matt Brecknell 28Oct 2022Explaining seL4 integrity
3. Theorems

p

auth_confinement
pas_refined p s1

a. Integrity
- any transition will respect the policy

theorem kernel_integrity:

  ― ‹If the subject calls the kernel

     in a state s0 where pas_refined p s0 is True,

     then the kernel exits in a state s1

        where integrity p s0 s1 is True›

b. Authority confinement
- any transition will maintain the policy

theorem auth_confinement:

  ― ‹If the subject calls the kernel

     in a state s0 where pas_refined p s0 is True,

     then the kernel exits in a state s1

        where pas_refined p s1 is True›

Examples of changes permitted by integrity
- Frame contents may change if the subject has Write access to the 

frame’s component

- A thread may be restarted if it’s blocked receiving on an endpoint 

and the subject has SyncSend to the endpoint’s component

- If a state refines a policy, and the policy is well-formed for the subject, 
then from that state…

p

s0 s1

pas_refined p s0

integrity p0 s0 s1

kernel_integrity



Matt Brecknell 29Oct 2022Explaining seL4 integrity
3. Theorems

a. Integrity
- any transition will respect the policy

theorem kernel_integrity:

  ― ‹If the subject calls the kernel

     in a state s0 where pas_refined p s0 is True,

     then the kernel exits in a state s1

        where integrity p s0 s1 is True›

b. Authority confinement
- any transition will maintain the policy

theorem auth_confinement:

  ― ‹If the subject calls the kernel

     in a state s0 where pas_refined p s0 is True,

     then the kernel exits in a state s1

        where pas_refined p s1 is True›

Theorems are subjective
- They require that the current thread belongs to the subject

- The changes allowed by integrity depend on the subject

Examples of changes permitted by integrity
- Frame contents may change if the subject has Write access to the 

frame’s component

- A thread may be restarted if it’s blocked receiving on an endpoint 

and the subject has SyncSend to the endpoint’s component

- If a state refines a policy, and the policy is well-formed for the subject, 
then from that state…

p

auth_confinement
pas_refined p s1

p

s0 s1

pas_refined p s0

integrity p0 s0 s1

kernel_integrity



Matt Brecknell 30Oct 2022Explaining seL4 integrity

How to show integrity

✓

✓

✓

1. Define an access control policy

a. Identify components, i.e. label system resources

b. Define an authority graph, i.e. arrows between components


2. Show policy refinement for the current state

a. Show that protection state maps onto the authority graph

b. Show well-formedness for the subject


3. The theorems establish that

a. State changes initiated by the subject are bounded by the policy

b. The policy is maintained for the subject


4. For static systems

- Use a tool to check well-formedness, and a trustworthy loader


5. For dynamic systems

- Prove that trusted components establish well-formed policies for their subordinates

Summary



Matt Brecknell 31Oct 2022Explaining seL4 integrity

Policies are subjective
- Every policy identifies one of its components as the current subject

- The component currently taking an action is called the “subject”

Policy refinement is subjective
- The well-formedness of a policy depends on the choice of subject

- The subject may not have Control over another component

The theorems are subjective
- The current thread must belong to the current subject

- Changes permitted by integrity depend on the subject

Switching subjects requires switching policies
- What gives us the right to do that?

Subjectivity

subject = A

s1

subject = B

s2

authority confinement

pas_refined pB s1pas_refined pA s1 pas_refined pB s2

???

s0

pas_refined pA s0

authority confinement



Matt Brecknell 32Oct 2022Explaining seL4 integrity

Constraints
- No component has Control over another component


- No authority to redistribute resources

4. Static Systems

Payoff
- Without Control, policy well-formedness is no longer subjective


- Therefore, policy switches are free!

- If policy refinement holds for the initial state, then it holds always

To ensure integrity
- Use a system build tool that generates capDL


- It should check well-formedness for all components

- Use a verified capDL loader

Control
A

B

- The subject cannot have Control over another component

If a policy has then A cannot be the subject

Subjectivity of well-formedness

subject = A

s1

subject = B

s2

authority confinement authority confinement

pas_refined p{A,B} s0 pas_refined p{A,B} s1pas_refined p{A,B} s1 pas_refined p{A,B} s2

=

s0



Matt Brecknell 33Oct 2022Explaining seL4 integrity

Resources may be reconfigured by a trusted component
- A trusted component may have Control over its subordinates


- To treat it as subject, we need to redraw its boundary around its subordinates

- Switching away from a trusted component requires proof that it establishes a new well-formed policy

5. Dynamic Systems

A B C

S1

D E F

S2

p{A,B,C,D,E,F}

D E F

S2

A B C

S1

p{A,B,C,S2}

D

S2

G

A B C

S1

p{A,B,C,S2}

D

S2

G

A B C

S1

p{A,B,C,D,G}

s0

subject ∈ {A,B,C,D,E,F}

s1

subject = S2

s2

subject ∈ {A,B,C,D,G}

pas_refined p{A,B,C,D,E,F} s0 pas_refined p{A,B,C,S2} s1 pas_refined p{A,B,C,D,G} s2



Matt Brecknell 34Oct 2022Explaining seL4 integrity

How to show integrity

✓

✓

✓

✓

✓

1. Define an access control policy

a. Identify components, i.e. label system resources

b. Define an authority graph, i.e. arrows between components


2. Show policy refinement for the current state

a. Show that protection state maps onto the authority graph

b. Show well-formedness for the subject


3. The theorems establish that

a. State changes initiated by the subject are bounded by the policy

b. The policy is maintained for the subject


4. For static systems

- Use a tool to check well-formedness, and a trustworthy loader


5. For dynamic systems

- Prove that trusted components establish well-formed policies for their subordinates

Summary


